5 research outputs found

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)

    Ultrafast excited state relaxation dynamics in a heteroleptic Ir(iii) complex,: Fac -Ir(ppy)2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy

    No full text
    © 2021 the Partner Organisations.A typical metal complex has a central metal surrounded by multiple ligands, which greatly affect the properties of the whole complex. Although heteroleptic complexes often exhibit substantially different behaviors from homoleptic complexes, systematic studies to explain their origins have been rare. Of special importance is to understand why the heteroleptic metal complex shows a more complicated excited state relaxation dynamics than the homoleptic metal complex. To address this issue, we investigated the excited state relaxation dynamics of a heteroleptic Ir(iii) complex, fac-Ir(ppy)2(ppz), and two homoleptic Ir(iii) complexes, fac-Ir(ppy)3 and fac-Ir(ppz)3, using femtosecond X-ray transient absorption (fs-XTA) spectroscopy, ultrafast optical transient absorption (TA) spectroscopy, and DFT/TDDFT calculation. The data show that the ultrafast relaxation dynamics of ∼450 fs, which is significantly faster than those of previous Ir(iii) complexes with other ligands, is observed only in fac-Ir(ppy)2(ppz) but not in the homoleptic Ir(iii) complexes. Such dynamics observed for only heteroleptic Ir(iii) complexes must originate from the heteroleptic character, and naturally, the inter-ligand energy transfer between two different types of ligands has been suggested to explain the fast dynamics. Both fs-XTA and TA data, however, favor the assignment of the ultrafast dynamics of ∼450 fs to the internal conversion (IC) process from the ppz-localized 3MLCT to the ppy-localized 3MLCT. The DFT/TDDFT calculations support that the abnormally fast IC for fac-Ir(ppy)2(ppz) is due to a large nonadiabatic coupling and the small energy gap between the two states.11Nsciescopu
    corecore